23-BIT CRYSTAL-STABILIZED PULSE GENERATOR (SERIES PPG323F)

FEATURES

- Digitally programmable in 8,388,608 steps
- Monotonic pulse-width-vs-address variation
- Rising edge triggered
- Precise and stable pulse width
- Low jitter over entire programmable range
- Input & outputs fully TTL interfaced & buffered
- 10 T²L fan-out capability

A11		28	GND
A10		27	A12
A9		26	A13
A8		25	A14
A7	5	24	A15
A6	□ 6	23 🗖	A16
A5	D 7	22 🗖	A17
A4	□ 8	21 🗖	A18
A3	□ 9	20 🗖	A19
A2	□ 10	19 🗖	A20
A1	D 11	18 🗖	A21
A0	D 12	17 🗖	A22
OUT	□ 13	16 🗖	RES
IN	D 14	15 🗖	VCC

PINOUT

FUNCTIONAL DESCRIPTION

The PPG323F-series device is a 23-bit digitally programmable pulse generator. The width, PW_A , depends on the address code (A22-A0) according to the following formula:

$$PW_A = PW_0 + T_{INC} * A$$

where A is the address code, T_{INC} is the incremental pulse width of the device, and PW₀ is the inherent pulse width of the device. The incremental

width is specified by the dash number of the device and can range from 20ns through 5us, inclusively. RES is held LOW during normal operation. When it is brought HIGH, OUT is forced into a LOW state, and the unit is ready for the next trigger input. The address is not latched and must remain asserted while the output pulse is active. The PPG323F is crystal-stabilized, providing low jitter (350ps RMS) over the entire address range.

SERIES SPECIFICATIONS

- Pulse width tolerance: 0.05% or 100ps, whichever is greater
- Inherent width (PW₀): 100ns typical
- Inherent delay (T_{TO}): 10ns typical
- Operating temperature: -40° to 85° C
- Supply voltage V_{cc}: 5VDC ± 5%
- Supply current: I_{CC} = 200ma typical

PIN DESCRIPTIONS

TRIG	Trigger Input
OUT	Pulse Output
A0-A22	Address Bits
VCC	+5 Volts
GND	Ground
GND	Ground

DASH NUMBER SPECIFICATIONS

Part Number	Incremental Width Per Step (ns)	Total Width Change (sec)
PPG323F-20	20	0.16777
PPG323F-50	50	0.41943
PPG323F-100	100	0.83886
PPG323F-200	200	1.6777
PPG323F-500	500	4.1943
PPG323F-1000	1000	8.3886
PPG323F-2000	2000	16.777
PPG323F-5000	5000	41.943

NOTE: Any dash number between 20 and 5000 not shown is also available.

©2014 Data Delay Devices

APPLICATION NOTES

DEVICE TIMING

The timing definitions and restrictions for the PPG323F are shown in Figure 1. The unit is activated by a rising edge on the TRIG input. After a time, T_{TO} (called the inherent delay), the rising edge of the pulse appears at OUT. The duration of the pulse is given by the above equation. For the duration of the pulse, the device ignores subsequent triggers. Once the falling edge of the pulse has appeared at OUT, an additional time, T_{OTR} , is required before the device can respond to the next trigger.

At power-up, the state of the PPG323F is unknown. Consequently, after power is applied, the unit may not respond to input triggers for a time equal to the maximum pulse width, PW_T . After this time, the unit will function properly. If your application requires that the device function immediately, issue a quick reset at power-up.

POWER SUPPLY BYPASSING

The PPG323F relies on a stable power supply to produce repeatable pulses within the stated tolerances. A 0.1uf capacitor from VCC to GND, located as close as possible to the VCC pin, is recommended. A wide VCC trace should connect the VCC pin externally, and a clean ground plane should be used.

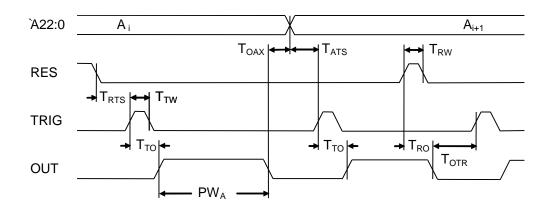


Figure 1: Timing Diagram

DEVICE SPECIFICATIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS
Total Programmable Pulse Width	PW _T		8,388,608		T _{INC}
Inherent Pulse Width	PW ₀		100.0		ns
Trigger to Output Delay	T _{TO}		10.0		ns
Reset to Output Delay	T _{RO}			17.0	ns
Output Skew	T _{SKEW}		1.5		ns
Trigger Pulse Width	T _{TW}	5.0			ns
Reset Pulse Width	T _{RW}	10.0			ns
Reset to Trigger Setup Time	T _{RTS}	9.0			ns
Address to Trigger Setup Time	T _{ATS}	6.0			ns
Output Low to Address Change	T _{OAX}	0.0			ns
Output to Trigger Recovery Time	T _{OTR}	10.0			ns

TABLE 1: AC CHARACTERISTICS

TABLE 2: ABSOLUTE MAXIMUM RATINGS

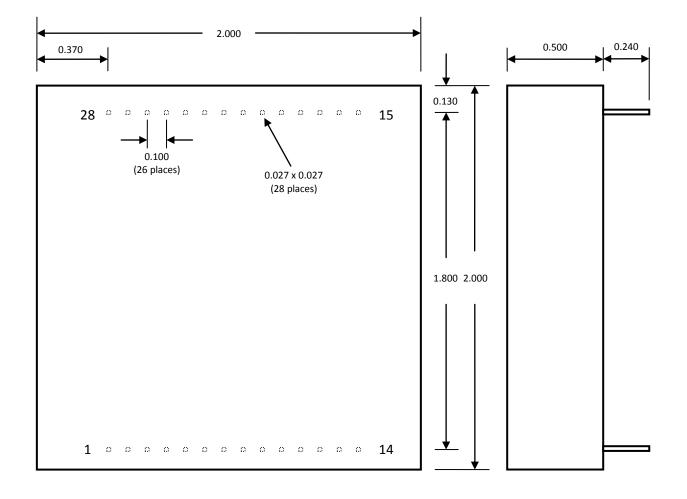

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
DC Supply Voltage	V _{CC}	-0.3	7.0	V	
Input Pin Voltage	V _{IN}	-0.3	V _{DD} +0.3	V	
Storage Temperature	T _{STRG}	-55	150	С	
Lead Temperature	T _{LEAD}		300	С	10 sec

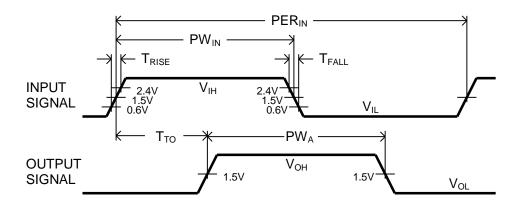
TABLE 3: DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
High Level Output Voltage	V _{OH}	2.5	3.4		V	$V_{CC} = MIN, I_{OH} = MAX$
	-					$V_{IH} = MIN, V_{IL} = MAX$
Low Level Output Voltage	V _{OL}		0.35	0.5	V	$V_{CC} = MIN, I_{OL} = MAX$
						$V_{IH} = MIN, V_{IL} = MAX$
High Level Output Current	I _{OH}			-1.0	mA	
Low Level Output Current	I _{OL}			20.0	mA	
High Level Input Voltage	V _{IH}	2.0			V	
Low Level Input Voltage	V _{IL}			0.8	V	
Input Clamp Voltage	V _{IK}			-1.2	V	$V_{CC} = MIN, I_I = I_{IK}$
Input Current at Maximum	I _{IHH}			0.1	mA	$V_{CC} = MAX, V_I = 7.0V$
Input Voltage						
High Level Input Current	I _{IH}			20	μA	$V_{CC} = MAX, V_I = 2.7 V_{CC}$
Low Level Input Current	Ι _{ΙL}			-0.6	mA	$V_{CC} = MAX, V_{I} = 0.5$
Short-circuit Output Current	I _{OS}	-60		-150	mA	$V_{CC} = MAX$
Output High Fan-out				25	Unit	
Output Low Fan-out				12.5	Load	

(0C to 70C, 4.75V to 5.25V)

PACKAGE DIMENSIONS

DELAY LINE AUTOMATED TESTING


TEST CONDITIONS

INPUT:		OUTPUT:	
Ambient Temperature:	$25^{\circ}C \pm 3^{\circ}C$	Load:	1 FAST-TTL Gate
Supply Voltage (Vcc):	$5.0V\pm0.1V$	C _{load} :	5pf ± 10%
Input Pulse:	High = $3.0V \pm 0.1V$	Threshold:	1.5V (Rising & Falling)
	$Low = 0.0V \pm 0.1V$		
Source Impedance:	50Ω Max.		
Rise/Fall Time:	3.0 ns Max. (measured		
	between 0.6V and 2.4V)		
Pulse Width:	PW _{IN} = 10ns		
Period:	PER _{IN} = 2 x Max. Pulse Width		

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Timing Diagram For Testing